Basics on set theory: sets, elements, subsets. Operations on sets: complementary, intersection, union, difference. Cartesian product of two or more sets.
Recall on natural, integer, rational numbers. Real numbers. The main elementary functions, their properties and their Cartesian representation. Recall of elementary geometry and analytic geometry of the plane. Polynomial functions of I and II degree. Lines, parables, circumferences and hyperboles in the Cartesian plane. Polynomial and rational equations and inequalities.
Recall of trigonometry: the circular functions sine, cosine, tangent, cotangent and their main properties. Solution of elementary equations and inequalities with trigonometric terms. Powers with natural, integer and rational exponent and their properties. Exponential functions and their properties. Definition of logarithm. Main properties of logarithms. Logarithmic functions. Solution of elementary equations and inequalities with exponential and logarithmic terms.